INZINERIA BUDDOWNOCTWO

CZASOPISMO POLSKIEGO ZWIĄZKU INŻYNIERÓW I TECHNIKÓW BUDOWNICTWA

State of the second sec

POLSKI ZWIĄZEK INŻYNIERÓW I TECHNIKÓW BUDOWNICTWA

Oddział w Opolu

Artykuł na stronie 122

Autor zdjęcia P. Uchorczak/Archiwum Urzędu Miasta Opola

INŻYNERIA I BUDOWNICTWO Rok LXXVII (rok założenia 1938)

WARSZAWA, MARZEC 2021

Czasopismo POLSKIEGO ZWIĄZKU INŻYNIERÓW I TECHNIKÓW BUDOWNICTWA

3/2021

SPIS TREŚCI	strona	Tematyka czasopisma Ogólne problemy budownictwa i inżynierii lądowej, teoria konstrukcji, kształtowanie
ZAGADNIENIA KONSTRUKCYJNE I MATERIAŁOWE		wspomaganie komputerowe, projektowanie, realizacja, diagnostyka i utrzymanie obiektów budowlanych, inżynierskich i specjalnych, w tym mostów, budowl podziemnych i komunalnych, badania materiałów, elementów i konstrukcji, fizyka budowli, geotechnika, normalizacja, jakość i certyfikacja, kształcenie kadr ora: aktualne sprawy środowiska budowlanego.
A. Wojnar, G. Wiatrowicz – Analiza zużycia stali w jednonawowych ramach portalowych z kształtowników walcowanych na goraci	a h o	Artykuły są recenzowane. Za publikację w czasopiśmie naukowym "Inżynieria i Budownictwo" uzyskuje się 5 punktów (Rozporządzenie MNiSW z 22.02.2019 u w sprawie ewaluacji jakości działalności naukowej).
i giętych na zimno	91	Wydawca Fundacja PZITB Inżynieria i Budownictwo 00-050 Warszawa, ul. Świętokrzyska 14 Przewodniczący Rady Fundacji prof. dr hab. inż. Kazimierz Flaga, dr h.c. mułt
TEORIA I BADANIA NAUKOWE		Redakcja 00-637 Warszawa, Al. Armii Ludowej 16, pokój 626A Delitezbailez, Wudaist kateriarii Ladowei, tal fav 20,000,00,00
R. Jasiński – Badania efektu akustoelastycznego w autoklawizowanym betonie komórkowym	0 96	e-mail: pzitbinzynieria@neostrada.pl www.inzynieriaibudownictwo.p redakcja@inzynieriaibudownictwo.pl www.zgpzitb.org.p
D. Czepiżak – W sprawie oceny techniczne utraty stateczności elementów stalowyci	ee ej h	Kolegium Redakcyjne Redaktor naczelna prof. dr hab. inż. Hanna Michalak, zastępca redaktor naczelne drinż Stefan Pyrak sekretarz redakcji morinż Monika Kubisiak redaktorzy tematyczni
metodą ogólną.	102	prof. dr hab. inż. Marian Giżejowski, dr hab. inż. Aniela Glinicka – prof. PW prof. dr hab. inż. Czesław Miedziałowski, mgr inż. Piotr Rychlewski, prof. dr hab. inż. Anna Siemińska-Lewandowska, prof. dr hab. inż. Tadeusz Urban, prof. dr inż. Woicieck
MOSTY		Włodarczyk, redaktor językowy mgr Barbara Głuch, redaktor statystyczny prof. dr inż. Wojciech Włodarczyk. Współpracują: prof. dr hab. inż. Piotr Noakowsk (Niemcy), prof. dr inż. Andrzej Nowak – dr h.c. (USA).
B. Wichtowski, K. Konecki – Analiza obli czeniowa metoda elementów skończonycl	i- h	Rada Programowa Czasopism i Wydawnictw PZITB
pęknięć zmęczeniowych w złączu stalowyn doczołowym z jednostronnymi nakładkam	n ni	w kadencji 2020–2024 Przewodnicząca prof. dr hab. inż. Anna Halicka Skład Rady Programowej w trakcie tworzenia.
rombowymi J. Rabiega, S. Stelmach, P. Olczyk – Remon	107 nt	Warunki prenumeraty Zamówienia prenumeraty w wersji elektronicznej należy składać na jednyn z wymienionych portali:
stalowego wiaduktu kolejowego nad ul. Dwor cową w Żywcu	- 113	www.e-kiosk.pl (http://www.e-kiosk.pl/inzynieria_i_budownictwo), www.egazety.pl (https://www.egazety.pl/fundacja-pzitb/e-wydanie-inzynieria-i-budownictwo.html) www.nexto.pl (http://www.nexto.pl/e-prasa/inzynieria_i_budownictwo_p132009.xml)
M. Maślak – Meghalaya – żywe mosty kształto wane w korzeniach figowca)- 118	Cena rocznej prenumeraty w wersji elektronicznej wynosi 125,40 zł (z VAT), cena 1 wydania w wersji elektronicznej 10,45 zł (z VAT). * * *
Z ŻYCIA PZITB		Zamówienie prenumeraty w tradycyjnej, papierowej wersji "Inżynierii i Budownictwa można składać w dowolnym terminie w siedzibie redakcji. Zamawiający może otrzyma czasopismo, począwszy od następnego miesiąca po dokonaniu wpłaty. Zamówienia
D. Bajno – 51. Krajowy Zjazd Delegatów PZITE	3	 zeszytów sprzed terminu wpłaty będą realizowane – w miarę możliwości – z zapasów magazynowych. Cena rocznej prenumeraty normalnej wynosi 259,20 zł (w tym 8% VAT).
Redakcja – Z historii Krajowych Zjazdów PZITB	122 3 128	Cena rocznej prenumeraty ulgowej dla członków indywidualnych PZITB, Związku Mostowców RP, PIIB oraz studentów wynosi 155,52 zł (w tym 8% VAT). W przypadku prenumeraty ulgowej jest wymagane podanie (odpowiednio): nazw
KRONIKA		oddziału stowarzyszenia; numeru rejestracyjnego w Okręgowej Izbie Inżynierów Budownictwa; nazwy uczelni i wydziału. Faktura za prenumeratę ulgową może być wystawiona tylko na osobę fizyczną.
Śp. Barbara Malec (1944–2020) Śp. Japusz Kraspowski (1938–2020)	131 132	Wpłaty za prenumeratę w wersji papierowej prosimy dokonywać na konto Fundacja PZITB Inżynieria i Budownictwo, 00-050 Warszawa, ul. Świętokrzyska 14 Bank Millennium Warszawa, nr 23 1160 2202 0000 0000 5515 9052.
Sp. Janusz Masnowski (1930–2020)	152	REKLAMY przyjmuje redakcja
LISTY DO REDAKCJI		Materiały opublikowane w "Inżynierii i Budownictwie" są objęte prawem autorskim i nie mogą być – bez zgody redakcji – rozpow- szechniane w żadnej postaci. Redakcja nie odpowiada za treść zamieszczonych reklam.
A. Jarominiak – Jeszcze o wdrażaniu pa wielkośrednicowych	li II okł.	Indeks 95132 Cena: 20,00 zł + 8% VAT ISSN 0021-0315 (wersja pierwotna)
RECENZJE	III okł.	PRZYGOTOWANIE DO DRUKU I DRUK: Drukarnia " LOTOS Poligrafia " sp. z o.o. www.lotos-poligrafia.pl, tel. 22-872-22-66, fax 22-872-22-68.
INŻYNIERIA I BUDOWNICTWO NR 3/2021		89

Dr hab. inż. BERNARD WICHTOWSKI, em. prof. ZUT Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Mgr inż. KRZYSZTOF KONECKI Saferoad Pomerania Sp. z o.o. w Szczecinie

Mosty

Analiza obliczeniowa metodą elementów skończonych pęknięć zmęczeniowych w złączu stalowym doczołowym z jednostronnymi nakładkami rombowymi

Konstrukcje mostowe są najdłużej użytkowanymi naziemnymi budowlami inżynierskimi. W okresie długoletniej eksploatacji, podobnie jak inne konstrukcje, ulegają degradacji funkcjonalnej i materiałowej [4, 12, 21]. Badania wykazują, że w wielu przypadkach, pomimo że nie spełniają one ściśle wymagań norm projektowych, są w stanie bezpiecznie przenosić aktualne obciążenia użytkowe. Według [18] ocenę ich nośności należy prowadzić dokładniej i bardziej wiarygodnie, najlepiej według trzystopniowej oceny (podstawowej, pośredniej i zaawansowanej) podanej w [10].

Jednocześnie w ramach współpracy między Centrum Badawczym Komisji Europejskiej (JRC) oraz Europejską Konwencją Konstrukcji Stalowych (ECCS) ukazały się zalecenia europejskie dotyczące oceny trwałości zmęczeniowej istniejących mostów stalowych [7, 11]. Są one kompatybilne z nowymi normami projektowania konstrukcji stalowych.

Nowa metoda oceny nośności mostów istniejących w latach 2003–2011 została przyjęta w normach stosowanych w Kanadzie, Wielkiej Brytanii, Danii, Szwajcarii i USA. Jest to metoda rozdzielonych wykalibrowanych współczynników bezpieczeństwa. Przyjęto obniżone wymagania w stosunku zarówno do nowo projektowanych konstrukcji, jak i w odniesieniu do okresu ich dalszej eksploatacji. Swój wkład w te zagadnienia miał również Zakład Konstrukcji Metalowych Politechniki Szczecińskiej, który przez 37 lat prowadził badania rentgenograficzne *in situ* jakości spoin złączy doczołowych w starych eksploatowanych mostach na terenie całego kraju [4, 13]. W ramach kompleksowej oceny żywotności tych złączy przeprowadzono ich laboratoryjne badania zmęczeniowe przedstawione na rys. 1 [12, 15].

Proste regresji dotyczą badań próbek:

 – "a" – ze spoinami czołowymi poziomu jakości większej od *D* i starzonymi w sposób naturalny przez 45 lat, w których wartość nieograniczonej wytrzymałości zmęczeniowej (*NWZ*) Z_{ri} = 101 MPa;

Rys. 1. Proste regresji badanych czterech rodzajów złączy ze spoinami czołowymi [12]

- "b" - ze spoinami czołowymi poziomu jakości *B* i *C*, w których Z_{ri} = 125 MPa;

– "c" – że spoinami czołowymi obarczonymi pęknięciami wewnętrznymi o uzyskanej z badań wartości Z_{rj} = 90 MPa;

- "d" – złączy doczołowych z przykrytymi jednostronnie nakładkami rombowymi o wartości Z_{ri} = 79 MPa.

Jest widoczne znaczne zmniejsźenie wytrzymałości zmęczeniowej spoin z pęknięciami wewnętrznymi oraz spoin przykrytych nakładkami rombowymi w porównaniu z wytrzymałością spoin czołowych o poziomie jakości B i C, wynoszące 28,3 i 36,8%. Należy nadmienić, że przy liczbie cykli obciążenia powyżej 1,1 · 10⁶ nakładki na spoinach w większym stopniu osłabiają ich wytrzymałość zmęczeniową niż pęknięcia wewnętrzne w spoinach. Badania były podyktowane bezpośrednio potrzebami praktyki, bez analizy przebiegu zjawisk zmęczeniowych omówionych w literaturze technicznej [2, 5, 8, 19]. W literaturze tej podano wiele hipotez powstawania i rozwoju pęknięć zmęczeniowych w ujęciu niedeterministycznym. Przykładowo w [5] jest cytowane opracowanie, w którym zestawiono 64 wzory opisujące prędkość pękania, uzależniając ten fakt od właściwości materiałów i obciążenia. Z uwagi na różnorodność grup metali i zróżnicowany ich stan materiałowo-techniczny, nie ma jakiejkolwiek uogólnionej hipotezy (rys. 2). Słusznie stwierdził prof. Stanisław Kocańda, że: tkwimy stale w opisie fenomenologicznym. To prawda, jednak obecnie korzysta się z coraz doskonalszych narzędzi badawczych i obliczeniowych, np. mikroskopu skaningowego i pulsatora 200t (próbki "b" i "c") oraz metody elementów skończonych (MES próbki "d").

Rys. 2. Schematy wpływu czynników strukturalnych i składu chemicznego na kinematykę pękania zmęczeniowego stali konstrukcyjnej [19]

Badania zmęczeniowe złączy z nakładkami i analiza pęknięć

Przeprowadzono laboratoryjne badania zmęczeniowe modelu złącza doczołowego z nakładkami, odpowiadającego rozwiązaniom konstrukcyjnym złączy pasów dźwigarów blachownicowych badanych mostów kolejowych, o geometrii podanej na rys. 3 [14, 16].

Badania wykonano przy obciążeniu tętniącym rozciągającym przy pięciu wartościach naprężeń i współczyn-

Rys. 3. Wyniki badań 16 próbek "d" i prosta regresji z obszaru ufności [12, 14]

niku asymetrii cyklu $R = \sigma_{min}/\sigma_{max} = 0,1$. We wszystkich spoinach czołowych 16 badanych próbek brakowało przetopu (402) oraz występowały liczne żużle liniowe, wyodrębnione i grupowe (3011 + 3012 + 3014) według PN-EN IŚO 6520-1:2002. Spoiny próbek nie spełniały wymaganej jakości C według PN-EN ISO 5814:2014.

Badania przeprowadzono na pulsometrze z częstotliwością zmian obciążenia 300 cykli na minutę. Próbki pękały w przekrojach przechodzących przez ostre naroża nakładek rombowych w materiale rodzimym. Przy trzech wartościach naprężeń σ_{max} = 80, 100 i 140 MPa, w pięciu próbkach pojawiło się siedem pęknięć o parametrach podanych na rys. 4. Pęknięcia wystąpiły przy zróżnicowanej liczbie cykli obciążenia od 535 000 do 1 990 200. Dane badawcze próbek przy tych trzech wartościach naprężeń podano w tabl. 1.

Rys. 4. Próbki zniszczone: Pa), Pb), Pc) – przy σ_{max} = 80, 100 i 140 MPa oraz próbki niezniszczone: Pd), Pe) – przy σ_{max} = 80 MPa

W próbkach Pa, Pb, Pc pęknięcia pojawiły się przy 99 000, 168 900 i 20 000 cykli przed całkowitym rozerwaniem. Natomiast próbki Pd i Pe nie uległy zniszczeniu, chociaż od momentu wystąpienia pęknięć były dodatkowo obciążone 1 819 800 i 836 800 cyklami. Ustalono, że prędkość propagacji pęknięcia zmęczeniowego zależy od wartości naprężeń oraz długości pęknięcia zgodnie z zależnościami przedstawionymi na rys. 5. Rozwój analizowanych pęknięć w przypadku σ_{max} = 80, 100 i 140 MPa wystąpił po N_{sred} = 1 760 000, 1 455 100 i 535 000 cykli obciążenia.

Na rysunku 6 pokazano przełom rozerwanej dynamicznie próbki Pc z dwoma pęknięciami po 555 000 cykli obciążenia, a na rys. 7 – schemat trajektorii ich rozprzestrzeniania się. Pęknięcia te, z widocznymi na nich prążkami zmęczeniowymi, osłabiają przekrój płaskownika złącza o 23,3% i zwiększają naprężenia w przekroju

Dane probek trzech poziolnów naprężen z pęknięciami zmęczeniowymi									
σ _{max} N	Nr		Liczba cyk	li obciążeń	bciążeń Długość pęknięcia pęknięcie mm - - 1 760 000 30 1 990 200 16 1 817 200 14 - - 1 455 100 13÷20 - - 535 000 35÷38 - -	Niezgodności spawalnicze			
MPa	próbki	Z _{rj} ^(*) , MPa	zerwanie	pęknięcie					
	1	91,7 -	1 325 000	_	_	3012÷402			
00	2	81,3 (82,9)	1 859 000	1 760 000	30	3011÷3012÷402			
00	3	79,2 (79,4)	2 827 000 ²⁾	1 990 200	16	3012÷402			
	4	79,2 (81,9)	3 637 000 ²⁾	1 817 200	14	3011÷3012÷402			
1		148,1 –	648 000	_	_	3011÷3012÷402			
100	2	103,1 –	949 100	_	_	3012÷402			
	3	85,3 (88,7)	1 624 000	1 455 100	13÷20	3012÷402÷4011			
	1	129,7 –	497 000	_	-	3012÷3014÷402			
140	2	124,7 (126,3)	555 000	535 000	35÷38	3012÷3014÷402			
	3	118,1 –	648 000	-	_	3011÷402			
1)									

Tablica 1

áw nanzatań – nakniaala

¹⁾ Z_{ij} – nieograniczona wytrzymałość zmęczeniowa (wartości w nawiasach dotyczą N pęknięć).
 ²⁾ Próbki niezniszczone.

Rys. 5. Zależności długości pęknięcia od liczby cykli N i naprężeń σ [19]

o 43 MPa do wartości 183 MPa. Prążki są śladami przerywanego w każdym cyklu obciążenia postępującego przemieszczania się frontu pęknięcia. Są one prawie prostopadłe do kierunku propagacji pękania. Według danych literaturowych dotychczas nie ustalono ścisłego kryterium rozprzestrzeniania się pęknięć zmęczeniowych. W pracy [19] opisano trzy mechanizmy propagacji pęknięć: *C. Lairda* i *G.C. Smitha*, *A.J. Krasowskiego* oraz *P.J. Forsytha* i *D.A. Rydera*.

Rys. 6. Przełom pęknięć Pc) o kształcie półeliptycznym (A_{netto} = 2160 – 233,5 – 269,5 = 1658 mm², σ = 183 MPa, Z_{ri} = 124,7 MPa)

Rys. 7. Trajektoria rozprzestrzeniania się pękania: I – strefa zarodkowania, II – strefa ustalonego rozwoju, III – strefa niestabilnego rozwoju (dołamywania). Oznaczenia: 1 – mikropęknięcia, ••• – prążki zmęczeniowe [19]

Zarodkowanie pęknięć zmęczeniowych najczęściej występuje na powierzchni materiału lub w warstwie przypowierzchniowej, a ich głównym miejscem są trwałe pasma poślizgu. W pracy [19] podano podstawowe modele zarodkowania pęknięć zmęczeniowych: P. Neumanna, G.C. Smitha i P. Lukaša. W przedmiotowych złączach koncentratorami naprężeń sprzyjającymi tworzeniu się pęknięć są wtrącenia niemetaliczne omówione w [1]. Ilość, kształt oraz skład chemiczny i fazowy wtrąceń zależy od warunków, w jakich przebiegał wytop. Są to tlenki aluminium, krzemiany i spinele o składzie SiO₂,

Al₂O₃, MnO oraz pewne ilości FeO, CaO, MgO i TiO₂. Mają one wpływ na właściwości stali. Ich kształt oraz usytuowanie powodują anizotropię ciągliwości i udarności – różne właściwości fizyczne w różnych kierunkach. Wydłużenie próbki w próbie rozciągania jest największe, jeżeli kierunek wydłużenia wtrąceń pokrywa się z osią próbki wytrzymałościowej, natomiast najmniejsze, gdy wtrącenia mają kształt płytek i są prostopadłe do osi próbki badanej. Ich wpływ na koncentrację naprężeń zwiększa się z ostrokątnością wydzieleń (rys. 8), a ich wartość określamy według wzoru *C.E. Inglisa* [3, 9]

$$\sigma_{x} = \sigma_{zw} \left(1 + 2\sqrt{\frac{t}{\rho}} \right), \tag{1}$$

w którym:

 σ_{zw} – naprężenie zewnętrzne (p – według rys. 8),

t - połowa długości wtrącenia,

 ρ – promień krzywizny wtrącenia.

Według zależności (1) w przypadku bardzo małych promieni naprężenia na krawędzi wtrąceń zwiększają się, a gdy ρ będzie zmierzać do zera, naprężenia będą dążyć

Rys. 8. Rozkład naprężeń σ_x w pobliżu wtrąceń podłużnych – I, elipsoidalnych – II oraz kulistych – III [9]

do nieskończoności. Dotyczy to pęknięć, szczelin dowolnego kształtu. Matematyczny model pęknięcia przyjmuje się o zerowym promieniu zaokrąglenia w jego wierzchołku (krawędzi); nie jest to założenie "silne". Wszelkie szczeliny zmęczenia mają promień zaokrąglenia na krawędzi równy co najmniej odległości między atomami, czyli około $\rho = 10^{-40}$ m, podczas gdy inne wymiary szczeliny są rzędu 10^{-3} m.

Obliczeniowy model złącza z pęknięciami zmęczeniowymi

Rozkład naprężeń w złączach doczołowych z jednostronnymi nakładkami rombowymi, określonych metodą elementów skończonych, przedstawili autorzy w artykule [16]. Dotyczył on złączy bez pęknięć, badanych na zmęczenie (por. rys. 3). Otrzymane wyniki analizy wykazały, że nakładki to balast konstrukcyjny. Nie zmniejszają one naprężeń w spoinie czołowej złącza.

W niniejszym artykule analizie poddano pęknięcia zmęczeniowe, które wystąpiły w pięciu próbkach złączy doczołowych z nakładkami (por. rys. 4 i tabl. 1) podczas ich badań według rys. 3. Były to jedyne pęknięcia zmęczeniowe, których rozwój następował etapowo, w przeciwieństwie do pęknięć rozwijających się lawinowo w badanych złączach a, b, c według rys. 1. Analizowane pęknięcia to powierzchniowe szczeliny długości 2t = 13÷38 mm, penetrujące grubość blachy złącza na głębokość od h = 3,1÷9,0 mm (por. rys. 4). Pęknięcie zamodelowano jako szczeline o ściankach płaskich, równoległych o rozstawie szerokości 0,2 mm i kształcie elipsoidalnym. Na krawędziach półelipsoidalnych przewidziano obustronnie ukosowanie wysokości 2,0÷4,0 mm i szerokości 0,1 mm. Opracowano więc model szczeliny o wymaganym zerowym promieniu krzywizny jej krawedzi.

Niniejsze obliczenia są częściową rekapitulacją artykułu [16]. Wykonano je w programie Inventor Nastran na modelu podzielonym na elementy skończone typu tetrahedrons, 4-ścienne, 10-węzłowe (rys. 9). Po trzykrotnej analizie wstępnej przyjęto ostatecznie elementy o wymiarach 6,8 mm (ogólnie) z zagęszczeniem lokalnym do 3,4 mm w obszarach spoin oraz 1,0 mm w miejscach szczelin. Jednocześnie zaokrąglono końce nakładek promieniem r = 2 mm i przyjęto usytuowanie szczelin zmęczeniowych w odległości 64 mm od osi spoiny czołowej złącza, tj. w odległości 0,4 mm od dolnej krawędzi spoiny pachwinowej a = 3 mm. Jednocześnie uwzględniono szczelinę 0,1 mm między nakładkami a blachą pasową złącza. Podobnie jak w poz. [16], naprężenia obliczono

Rys. 9. Model obliczeniowy złącza z podziałem na elementy skończone i dane wytrzymałościowe stali

w punktach 1–1' usytuowanych na przekrojach poprzecznych *a*–*d* (rys. 10). Dotyczy to dwóch złączy rozciąganych przy naprężeniu 100 i 140 MPa, w których wystąpiły po dwa pęknięcia (szczeliny) zmęczeniowe. Obliczenia wykonano na stronie "A" z nakładkami rombowymi (awers) i na stronie "R" – lewej (rewers).

Rys. 10. Konstrukcja złącza i usytuowanie punktów pomiarowych

W uwagach normy PN-EN 1993-1-9 podano, że: *Pęk-nięcia zmęczeniowe pojawiające się w procesie eksploatacji niekoniecznie oznaczają kres użytkowania konstrukcji.* Według autorów artykułu analiza przedmiotowych pęknięć zmęczeniowych konkretnego mostowego złącza doczołowego w funkcji naprężeń określonych metodą elementów skończonych ma częściowo uzasadnić powyższe stwierdzenie.

Analiza naprężeniowa badanych pęknięć

Występują trzy stadia pęknięć zmęczeniowych – zarodkowanie, rozprzestrzenianie szczeliny i dołamanie (por. tabl. 1 i rys. 6). Takie też trajektorie rozprzestrzeniania się szczeliny podczas pękania zmęczeniowego przyjęto w literaturze (por. rys. 7). Dotychczas nie opracowano ścisłego kryterium przejścia od stadium zarodkowania mikropęknięć do ustalonej propagacji pęknięcia. Według [19] istnieje około 20 zależności empirycznych opisujących pełny wykres pękania zmęczeniowego. Autorzy artykułu uważają, że przyczynkiem do uzasadnienia niektórych zależności może być analiza naprężeniowa przedstawiona w niniejszym artykule.

• W powyższym celu przeprowadzono analizę dwóch najbardziej osłabionych złączy z dwoma pęknięciami – Pb i Pc, rozciąganych przy naprężeniu $\sigma_{max} = 100$ i 140 MPa. Z uwagi na wprowadzone zmiany w geometrii końców obecnych nakładek rombowych i związane z tym przesunięcie przekroju *c*–*c* w obszar ogniska największej koncentracji naprężeń, wykonano pełne dwuwariantowe obliczenie złącza przy naprężeniu $\sigma_{max} = 140$ MPa. Obliczone wartości naprężeń w przypadku złącza bez pęknięć podano w tabl. 2, a przy dwóch pęknięciach (o 2t = 35 i 38 mm) – w tabl. 3. Zaistniałe pęknięcia, poza zmniejszeniem przekroju blachy złącza i zwiększeniem naprężeń o 30,7%, powodują jednocześnie zwiększenie współczynnika koncentracji naprężeń K_{σ} od wartości 1,91 do 2,18.

• Wpływ jednego pęknięcia na inicjację pęknięcia drugiego oszacowano przez analizę naprężeń w punktach

Tablica 2
Obliczone wartości naprężeń Hubera-Misesa dla złącza rozciąganego naprężeniem
$\sigma_{ m max}$ = 140 MPa

Strona	$\sigma_{ m max}$ MPa	Przekrój	Wartości naprężeń σ w przekrojach <i>a–d</i> w punktach 1–1' MPa					Blacha $\sigma_{\rm \acute{s}red}$ MPa	σ_3 / σ_{max} $(\sigma_3 / \sigma_{max})$		
			1 i (1')	2 i (2')	3 i (3')	4 i (4')	5	1, 5, 1'			
"A" (awers)	140	а	86 (85)	80 (76)	76 (76)	71 (70)	86 -	86			
		b	133 (133)	134 (135)	101 (96)	134 (135)	136 -	134			
		140	с	138 (136)	138 (138)	267 (258)	137 (139)	139 -	138	1,91 (1,84)	
		d	141 (142)	141 (142)	141 (142)	141 (142)	141 -	141			
"R" (rewers)	140			а	166 (171)	166 (167)	157 (159)	160 (160)	160 -	166	
		b	130 (130)	131 (131)	137 (137)	134 (133)	131 -	130			
		с	130 (130)	131 (131)	138 (139)	133 (132)	132 -	131	0,99 (0,99)		
			d	139 (139)	139 (139)	139 (139)	139 (139)	139 -	139		

Tablica 3

Obliczone wartości naprężeń Hubera–Misesa dla złącza z dwoma pęknięciami rozciąganego naprężeniem $\sigma_{\rm max}$ = 140 MPa

Strona	$\sigma_{ m max}$ MPa	Przekrój	Wartości naprężeń σw przekrojach <i>a–d</i> w punktach 1–1' MPa					Blacha <i>o_{śred}</i> MPa	$\sigma_3/\sigma_{ m max}$ $(\sigma_{3'}/\sigma_{ m max})$	
			1 i (1')	2 i (2')	3 i (3')	4 i (4')	5	1, 5, 1'		
"A" (awers)	140	а	98 (112)	81 (57)	66 (70)	65 (67)	98 —	103		
		b	172 (170)	190 (181)	90 (55)	193 (193)	180 -	174		
		с	176 (172)	194 (180)	306 (295)	192 (192)	180 -	176	2,18 (2,11)	
		d	140 (140)	140 (140)	140 (140)	140 (140)	140 -	140		
"R" (rewers)	140	а	168 (164)	162 (180)	176 (171)	161 (154)	160 -	164		
		R" 140	b	114 (112)	122 (119)	192 (168)	133 (125)	110 -	112	
		с	105 (104)	107 (107)	285 (253)	105 (103)	105 -	105	2,03 (1,81)	
		d	140 (140)	140 (140)	140 (140)	140 (140)	140 -	140		

3 i 3', dwóch przekrojów *c*–*c*' przy naprężeniu $\sigma_{max} = 100$ i 140 MPa. Dokonano tego przy jednym, o największej długości w danym złączu pęknięciu 2*t* = 20 lub 38 mm. Jak wynika z rys. 11 i 12a, w punkcie 3' nastąpiło zwiększenie naprężeń do σ = 187 i 268 MPa, czyli maksymalnie do średniej wartości granicy plastyczności R_{eH} = 266 MPa uzyskanej z badań stali złącza. Są to wartości naprężeń niewywołujące uplastycznienia materiału złącza. Do powstania pęknięcia jest potrzebna dodatkowa koncentracja naprężeń wywołana wtrąceniem niemetalicznym.

• W celu wyjaśnienia etapowego rozwoju pęknięć zmęczeniowych na rys. 11 i 12 określono rozkład naprężeń na krawędziach półeliptycznych czterech szczelin, usytuowanych w przekroju *c–c* w przypadkach dwóch pęknięć: Pb i Pc. Określone wartości naprężeń dotyczą granic końcowego stadium ustalonego rozwoju głównego pękania zmęczeniowego, strefy II (por. rys. 7). Granica ta występuje między strefą sprężystego i plastycznego współczynniki koncentracji naprężeń o wartościach K_{σ} = 1,91 i 2,18.

Analiza naprężeniowa złączy wykazała całościowo ich dużą zgodność wyników z wynikami literaturowymi:

Rys. 11. Naprężenia w przekroju $c-\!c$ z pęknięciem Pb – 20/4,8 mm przy $\sigma_{\rm max}$ = 100 MPa

odkształcenia, w odległości r_{pl} od czoła pęknięcia (rys. 13). Z analizy literatury [19] (por. rys. 5) wynikają ścisłe związki między r_{pl} i geometrią złącza.

Uzyskano prawie jednakowe naprężenia w przypadku analizowanych szczelin. Na krzywych półeliptycznych wartości naprężeń wynoszą od 273 do 306 MPa. Wartości te są porównywalne z górnymi wartościami R_{eH} = 280 MPa (por. rys. 9) otrzymanymi w badaniach stali złącza. Uzyskana trzykrotnie wartość σ = 306 MPa dotyczy wierzchołków pęknięć i o 9,3% przekracza R_{eH}^{max} = 280 MPa. Fakt ten jest zgodny z rys. 8 i wzorem (1). Zbliżone wartości dotyczą określonych naprężeń średnich w poszczególnych pęknięciach. Średnia wartość naprężeń w przypadkach czterech pęknięć wynosi od 296 do 285 MPa, czyli ich różnica stanowi 3,9%. Natomiast różnica między wartościami średnimi w odniesieniu do trzech pęknięć, ze złączy o $\sigma_{\rm max}$ = 140 MPa, wynosi 4 MPa, co stanowi 1,4%.

Podsumowanie

Analizie poddano pęknięcia zmęczeniowe, które wystąpiły w spawanym złączu doczołowym przykrytym dwiema nakładkami rombowymi podczas ich badań (por. rys. 3). Artykuł stanowi kontynuację tematyki przedstawionej w opracowaniu [16]. Pełne obliczenia ograniczono do dwóch próbek obciążonych naprężeniem $\sigma_{\rm max}$ = 100 i 140 MPa. Są to próbki Pb i Pc z dwoma pęknięciami (por. rys. 4). Z uwagi na drobne korekty konstrukcyjne złączy, w porównaniu z próbkami z [16], wykonano obliczenia MES. Ich wyniki przedstawiono w tabl. 2 i 3. Pozwoliły one określić

Rys. 12. Naprężenia w przekroju *c*−*c* z jednym pęknięciem Pc − a) i dwoma pęknięciami Pc − b) przy σ_{max} = 140 MPa

Rys. 13. Strefa odkształcenia plastycznego przy wierzchołku pęknięcia [19]

1) zarodkowanie wszystkich pęknięć wystąpiło w strefie przypowierzchniowej na stronie awersu, na końcach nakładek rombowych, w miejscu konstrukcyjnego ogniska koncentracji naprężeń o K_{σ} = 2,04;

2) wszystkie pęknięcia miały analogiczny przełom (por. rys. 6) – zgodny z modelem stref odkształceń plastycznych (por. rys. 7) o geometrii ogólnej według rys. 13 $(2a/h \approx 2,0)$;

3) wpływ pęknięcia przy jednej nakładce wywołuje zwiększenie naprężeń w ognisku koncentracji naprężeń przy drugiej nakładce maksymalnie do wartości σ = 268 MPa, wartości R_{eH} uzyskanej z badań stali złącza; oznacza to, że do inicjacji pęknięcia jest konieczna koncentracja naprężeń "konstrukcyjnych" i jednocześnie od wtrąceń niemetalicznych o najmniejszej wartości K_{σ} = 2,04 przy wtrąceniu globularnym (kulistym) – por. rys. 8;

4) rozkład naprężeń na obwodzie pęknięć jest każdorazowo analogiczny, o najmniejszych wartościach w strefie górnej, strefie awersu; są to wartości równe górnym wartościom R_{eH} uzyskanym z badań stali złącza, natomiast w wierzchołku szczeliny występuje maksymalne naprężenie σ_{max} = 306 MPa, zgodnie ze wzorem (1). Według danych literaturowych wzrost pęknięć jest rozpatrywany w aspekcie mikrostruktury i ma bogatą literaturę w postaci tysięcy publikacji [5]. Najobszerniej jest analizowana strefa II – stadium ustalonego rozwoju głównego pęknięcia. Najczęściej stosuje się model plastycznego stępiania wierzchołka pęknięcia *C. Lairda* i *G.C. Smitha* z 1962 r. lub kryterium gęstości energii odkształcenia *G.S. Siha* albo kryterium maksymalnych naprężeń obwodowych podane przez *F. Erdogana* i *G.S. Siha* również w 1962 r.

Autorzy artykułu, wykorzystując przedstawione wyniki naprężeń w szczelinach dwóch złączy oraz uwzględniając ich odkształcenia plastyczne, sugerują poniższe rozwiązanie dotyczące rozwoju części II pęknięcia. Wykorzystano fakt, że przebieg pękania ciągliwego może być zahamowany w każdym momencie w wyniku zmniejszenia naprężenia poniżej granicy plastyczności materiału. Przesuwające się szczyty szczeliny o długości 2t, na powierzchni awersu, jako pierwsze dotrą do strefy obniżonych naprężeń σ = 110÷180 MPa (por. rys. 11 i 12). Pierwszeństwo w dotarciu do tych stref gwarantuje promień r_{pl} strefy plastycznej według rys. 13, czyli kształt szczeliny. Również ze złomów wynika, że pęknięcie zwiększa się szybciej wzdłuż powierzchni niż w głąb materiału. Następuje zmniejszenie naprężeń powierzchniowych na awersie do wartości pomierzonych 273÷289 MPa, czyli do naprężeń granicy plastyczności materiału (R_{eH}^{max} = 280 MPa). Zanika rozwój pękania ciągliwego w tych punktach na poziomie awersu. Zjawisko to ma wpływ na sąsiednie punkty krawędziowe szczeliny i w ramach zasady wyrównywania naprężeń zahamowuje ich pękanie i sukcesywnie dwustronnie podąża do wierzchołka pęknięcia. Zanika całkowity rozwój pękania od σ = 273 MPa do σ = 306 MPa.

Taki sposób rozwiązania problemu podano zgodnie z przysłowiami łacińskimi "audiatur et altera pars" (trzeba wysłuchać i drugiej strony) i jednocześnie "nil admirari" (nie dziw się niczemu).

P.S. Z danych literaturowych wynika, że dotychczas nie opracowano ścisłego kryterium określającego rozwój pękania strefy II i III, tj. strefy ustalonego rozwoju pęknięcia i strefy niestabilnego rozwoju pęknięcia podczas dołamywania. Pewien przyczynek do analizy stadium ustalonej propagacji pęknięcia głównego w strefie II stanowi niniejszy artykuł (rys. 14). Wykorzystując MES i wyniki literaturowych oraz własnych badań zmęczeniowych, autorzy planują również oszacować okres dołamywania się konstrukcji. Próba tych zamierzeń zostanie przedstawiona w oddzielnym artykule.

Rys. 14. Wizualizacja aksonometryczna pęknięć

PIŚMIENNICTWO

- [1] Blicharski M .: Inżynieria materiałowa. Stal. WNT, Warszawa 2004.
- [2] Gross C., Kłysz S., Wojnowski W.: Problemy niskocyklowej trwałości zmęczeniowej wybranych stali i połączeń spawanych. Wydawnictwo Instytutu Technicznego Wojsk Lotniczych, Warszawa 2004.
- [3] Inglis C.E.: Stresses in a plate due to the presence of cracks and sharp corners. Transactions of the Institute of Naval Architects. Vol. 55, 1913.
- [4] Innovative Bridge Design Handbook. Construction, Rehabilitation and Maintenance. Edited by Pipinato A., Elsevier Inc., Amsterdam, Tokyo 2016.
- [5] Kocańda S.: Zmęczeniowe pękanie metali. WNT, Warszawa 1985.
- [6] Kocańda S., Szala J.: Podstawy obliczeń zmęczeniowych. PWN, Warszawa 1997.
- [7] Kühn B. et al: Assessment of existing steel structures: recommendations for estimation of remaining fatigue life. JRC Scientific and Technical Report No. 43401. European Commission, Joint Research Centre, Luxemburg 2008.
- [8] Neimitz A.: Mechanika pękania. PWN, Warszawa 1998.
- [9] Neuber H.: Theory of notch stresses principles for exact stress calculation. J.W. Edwards, Ann Arbor, Michigan 1946.
- [10] SB-LRA. Guideline for Load and Resistance Assessment of Railway Bridges – Advices on the Use of Advanced Methods. Sustainable Bridges VI FP, Brussels 2007.
- [11] Siwowski T.: Trwałość zmęczeniowa drogowych mostów kratownicowych o konstrukcji nitowanej. "Inżynieria i Budownictwo", nr 8/2014.
- [12] Wichtowski B.: Wytrzymałość zmęczeniowa spawanych złączy doczołowych w stalowych mostach kolejowych. Prace Naukowe

Politechniki Szczecińskiej nr 572. Wydawnictwo Politechniki Szczecińskiej, Szczecin 2002.

- [13] Wichtowski B.: Service durability of the first welded bridges in Poland in the light of their butt joint investigation. "Archives of Civil Engineering", Vol. XLIX, No. 2/2003.
- [14] Wichtowski B., Wichtowski M.: Wytrzymałość zmęczeniowa spoin czołowych z nakładkami według Eurokodu 3. "Przegląd Spawalnictwa", nr 3/2011.
- [15] Wichtowski B.: Assessment of fatigue and selection of steel on constructions of steel bridges welded according to Eurocode 3. "Welding International" Vol. 27, No. 5/2013.
- [16] Wichtowski B., Konecki K.: Rozkład naprężeń w złączu stalowym doczołowym z jednostronnymi nakładkami rombowymi określony metodą elementów skończonych. "Inżynieria i Budownictwo", nr 12/2020.
- [17] Wichtowski B.: Obliczeniowa trwałość zmęczeniowa spoin czołowych z pęknięciami w pasach blachownicowego dźwigara mostu kolejowego. "Welding Technology Review – Przegląd Spawalnictwa", vol. 91, nr 5/2019.
- [18] Wiśniewski D.F., Casas J.R., Ghosn M.: Codes for Safety Assessment of Existing Bridges – Current State and Further Development. "Structural Engineering International", Vol. 22. No. 4/2012.
- [19] Wyrzykowski J.W., Pleszakow E., Sieniawski J.: Odkształcanie i pękanie metali. WNT, Warszawa 1999.
- [20] Wojnowski W.: Niskocyklowa wytrzymałość zmęczeniowa stali St3S. "Inżynieria i Budownictwo", nr 11/1999.
- [21] Wysokowski A.: Trwałość mostów stalowych w funkcji zjawisk zmęczeniowych i korozyjnych. IBDiM, Seria: Studia i Materiały nr 53, Warszawa 2001.